huaxi-backend-master/test_token.py

113 lines
4.0 KiB
Python
Raw Permalink Normal View History

2025-08-01 19:12:19 +08:00
# transformers调用本地模型
from transformers import AutoModelForCausalLM, AutoTokenizer,GenerationConfig
import torch
from transformers import __version__ as tf_version
import torch
import triton
import triton.language as tl
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "/data1/lingyun/model/QwenQwen3-32B-AWQ"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "你好2024年有什么大事件发生"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
# print("Triton 版本:", triton.__version__)
# if hasattr(tl, 'interleave'):
# print(" 当前 Triton 版本支持 tl.interleave")
# else:
# print("当前 Triton 版本不支持 tl.interleave")
# # print(dir(triton.language))
# print(f"Transformers: {tf_version}, PyTorch: {torch.__version__}")
# model_path = r"/data1/lingyun/model/QwenQwen3-32B-AWQ"
# def llm_answer(system_content, choose_model=model_path, user_content='', temperature=0.1, max_tokens=128, stream=False):
# print(1111,system_content,"\n",2222,user_content)
# tokenizer = AutoTokenizer.from_pretrained(
# choose_model,
# trust_remote_code=True # DeepSeek需要此参数
# )
# model = AutoModelForCausalLM.from_pretrained(
# choose_model,
# device_map="auto", # 自动选择GPU/CPU
# torch_dtype="auto", # 自动选择精度
# trust_remote_code=True # 允许执行模型自定义代码
# )
# # 3. 修复pad_token问题关键步骤
# if tokenizer.pad_token is None:
# tokenizer.pad_token = tokenizer.eos_token # 使用eos_token作为pad_token
# model.config.pad_token_id = tokenizer.pad_token_id # 同步模型配置
# messages=[{"role": "system", "content": "你好2024年有什么大事件发生"},
# ]
# inputs_ids = tokenizer.apply_chat_template(
# messages,
# tokenize=False,
# add_generation_prompt=True,
# enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
# )
# model_inputs = tokenizer([inputs_ids], return_tensors="pt").to(model.device)
# # conduct text completion
# generated_ids = model.generate(
# model_inputs,
# max_new_tokens=32768
# )
# outputs = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# i# parsing thinking content
# try:
# # rindex finding 151668 (</think>)
# index = len(output_ids) - output_ids[::-1].index(151668)
# except ValueError:
# index = 0
# thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
# content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
# return thinking_content,content
# if __name__ == '__main__':
# system_content = "你好2024年有什么大事件发生"
# model_path = r"/data1/lingyun/model/QwenQwen3-32B-AWQ"
# thinking_content,content = llm_answer(system_content,model_path)
# print(thinking_content,"\n","\n")
# print(content)