425 lines
16 KiB
Python
425 lines
16 KiB
Python
"""Validator functions for standard library types.
|
|
|
|
Import of this module is deferred since it contains imports of many standard library modules.
|
|
"""
|
|
|
|
from __future__ import annotations as _annotations
|
|
|
|
import math
|
|
import re
|
|
import typing
|
|
from decimal import Decimal
|
|
from fractions import Fraction
|
|
from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network
|
|
from typing import Any, Callable, Union
|
|
|
|
from pydantic_core import PydanticCustomError, core_schema
|
|
from pydantic_core._pydantic_core import PydanticKnownError
|
|
|
|
|
|
def sequence_validator(
|
|
input_value: typing.Sequence[Any],
|
|
/,
|
|
validator: core_schema.ValidatorFunctionWrapHandler,
|
|
) -> typing.Sequence[Any]:
|
|
"""Validator for `Sequence` types, isinstance(v, Sequence) has already been called."""
|
|
value_type = type(input_value)
|
|
|
|
# We don't accept any plain string as a sequence
|
|
# Relevant issue: https://github.com/pydantic/pydantic/issues/5595
|
|
if issubclass(value_type, (str, bytes)):
|
|
raise PydanticCustomError(
|
|
'sequence_str',
|
|
"'{type_name}' instances are not allowed as a Sequence value",
|
|
{'type_name': value_type.__name__},
|
|
)
|
|
|
|
# TODO: refactor sequence validation to validate with either a list or a tuple
|
|
# schema, depending on the type of the value.
|
|
# Additionally, we should be able to remove one of either this validator or the
|
|
# SequenceValidator in _std_types_schema.py (preferably this one, while porting over some logic).
|
|
# Effectively, a refactor for sequence validation is needed.
|
|
if value_type is tuple:
|
|
input_value = list(input_value)
|
|
|
|
v_list = validator(input_value)
|
|
|
|
# the rest of the logic is just re-creating the original type from `v_list`
|
|
if value_type is list:
|
|
return v_list
|
|
elif issubclass(value_type, range):
|
|
# return the list as we probably can't re-create the range
|
|
return v_list
|
|
elif value_type is tuple:
|
|
return tuple(v_list)
|
|
else:
|
|
# best guess at how to re-create the original type, more custom construction logic might be required
|
|
return value_type(v_list) # type: ignore[call-arg]
|
|
|
|
|
|
def import_string(value: Any) -> Any:
|
|
if isinstance(value, str):
|
|
try:
|
|
return _import_string_logic(value)
|
|
except ImportError as e:
|
|
raise PydanticCustomError('import_error', 'Invalid python path: {error}', {'error': str(e)}) from e
|
|
else:
|
|
# otherwise we just return the value and let the next validator do the rest of the work
|
|
return value
|
|
|
|
|
|
def _import_string_logic(dotted_path: str) -> Any:
|
|
"""Inspired by uvicorn — dotted paths should include a colon before the final item if that item is not a module.
|
|
(This is necessary to distinguish between a submodule and an attribute when there is a conflict.).
|
|
|
|
If the dotted path does not include a colon and the final item is not a valid module, importing as an attribute
|
|
rather than a submodule will be attempted automatically.
|
|
|
|
So, for example, the following values of `dotted_path` result in the following returned values:
|
|
* 'collections': <module 'collections'>
|
|
* 'collections.abc': <module 'collections.abc'>
|
|
* 'collections.abc:Mapping': <class 'collections.abc.Mapping'>
|
|
* `collections.abc.Mapping`: <class 'collections.abc.Mapping'> (though this is a bit slower than the previous line)
|
|
|
|
An error will be raised under any of the following scenarios:
|
|
* `dotted_path` contains more than one colon (e.g., 'collections:abc:Mapping')
|
|
* the substring of `dotted_path` before the colon is not a valid module in the environment (e.g., '123:Mapping')
|
|
* the substring of `dotted_path` after the colon is not an attribute of the module (e.g., 'collections:abc123')
|
|
"""
|
|
from importlib import import_module
|
|
|
|
components = dotted_path.strip().split(':')
|
|
if len(components) > 2:
|
|
raise ImportError(f"Import strings should have at most one ':'; received {dotted_path!r}")
|
|
|
|
module_path = components[0]
|
|
if not module_path:
|
|
raise ImportError(f'Import strings should have a nonempty module name; received {dotted_path!r}')
|
|
|
|
try:
|
|
module = import_module(module_path)
|
|
except ModuleNotFoundError as e:
|
|
if '.' in module_path:
|
|
# Check if it would be valid if the final item was separated from its module with a `:`
|
|
maybe_module_path, maybe_attribute = dotted_path.strip().rsplit('.', 1)
|
|
try:
|
|
return _import_string_logic(f'{maybe_module_path}:{maybe_attribute}')
|
|
except ImportError:
|
|
pass
|
|
raise ImportError(f'No module named {module_path!r}') from e
|
|
raise e
|
|
|
|
if len(components) > 1:
|
|
attribute = components[1]
|
|
try:
|
|
return getattr(module, attribute)
|
|
except AttributeError as e:
|
|
raise ImportError(f'cannot import name {attribute!r} from {module_path!r}') from e
|
|
else:
|
|
return module
|
|
|
|
|
|
def pattern_either_validator(input_value: Any, /) -> typing.Pattern[Any]:
|
|
if isinstance(input_value, typing.Pattern):
|
|
return input_value
|
|
elif isinstance(input_value, (str, bytes)):
|
|
# todo strict mode
|
|
return compile_pattern(input_value) # type: ignore
|
|
else:
|
|
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
|
|
|
|
|
|
def pattern_str_validator(input_value: Any, /) -> typing.Pattern[str]:
|
|
if isinstance(input_value, typing.Pattern):
|
|
if isinstance(input_value.pattern, str):
|
|
return input_value
|
|
else:
|
|
raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
|
|
elif isinstance(input_value, str):
|
|
return compile_pattern(input_value)
|
|
elif isinstance(input_value, bytes):
|
|
raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern')
|
|
else:
|
|
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
|
|
|
|
|
|
def pattern_bytes_validator(input_value: Any, /) -> typing.Pattern[bytes]:
|
|
if isinstance(input_value, typing.Pattern):
|
|
if isinstance(input_value.pattern, bytes):
|
|
return input_value
|
|
else:
|
|
raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
|
|
elif isinstance(input_value, bytes):
|
|
return compile_pattern(input_value)
|
|
elif isinstance(input_value, str):
|
|
raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern')
|
|
else:
|
|
raise PydanticCustomError('pattern_type', 'Input should be a valid pattern')
|
|
|
|
|
|
PatternType = typing.TypeVar('PatternType', str, bytes)
|
|
|
|
|
|
def compile_pattern(pattern: PatternType) -> typing.Pattern[PatternType]:
|
|
try:
|
|
return re.compile(pattern)
|
|
except re.error:
|
|
raise PydanticCustomError('pattern_regex', 'Input should be a valid regular expression')
|
|
|
|
|
|
def ip_v4_address_validator(input_value: Any, /) -> IPv4Address:
|
|
if isinstance(input_value, IPv4Address):
|
|
return input_value
|
|
|
|
try:
|
|
return IPv4Address(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('ip_v4_address', 'Input is not a valid IPv4 address')
|
|
|
|
|
|
def ip_v6_address_validator(input_value: Any, /) -> IPv6Address:
|
|
if isinstance(input_value, IPv6Address):
|
|
return input_value
|
|
|
|
try:
|
|
return IPv6Address(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('ip_v6_address', 'Input is not a valid IPv6 address')
|
|
|
|
|
|
def ip_v4_network_validator(input_value: Any, /) -> IPv4Network:
|
|
"""Assume IPv4Network initialised with a default `strict` argument.
|
|
|
|
See more:
|
|
https://docs.python.org/library/ipaddress.html#ipaddress.IPv4Network
|
|
"""
|
|
if isinstance(input_value, IPv4Network):
|
|
return input_value
|
|
|
|
try:
|
|
return IPv4Network(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('ip_v4_network', 'Input is not a valid IPv4 network')
|
|
|
|
|
|
def ip_v6_network_validator(input_value: Any, /) -> IPv6Network:
|
|
"""Assume IPv6Network initialised with a default `strict` argument.
|
|
|
|
See more:
|
|
https://docs.python.org/library/ipaddress.html#ipaddress.IPv6Network
|
|
"""
|
|
if isinstance(input_value, IPv6Network):
|
|
return input_value
|
|
|
|
try:
|
|
return IPv6Network(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('ip_v6_network', 'Input is not a valid IPv6 network')
|
|
|
|
|
|
def ip_v4_interface_validator(input_value: Any, /) -> IPv4Interface:
|
|
if isinstance(input_value, IPv4Interface):
|
|
return input_value
|
|
|
|
try:
|
|
return IPv4Interface(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('ip_v4_interface', 'Input is not a valid IPv4 interface')
|
|
|
|
|
|
def ip_v6_interface_validator(input_value: Any, /) -> IPv6Interface:
|
|
if isinstance(input_value, IPv6Interface):
|
|
return input_value
|
|
|
|
try:
|
|
return IPv6Interface(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('ip_v6_interface', 'Input is not a valid IPv6 interface')
|
|
|
|
|
|
def fraction_validator(input_value: Any, /) -> Fraction:
|
|
if isinstance(input_value, Fraction):
|
|
return input_value
|
|
|
|
try:
|
|
return Fraction(input_value)
|
|
except ValueError:
|
|
raise PydanticCustomError('fraction_parsing', 'Input is not a valid fraction')
|
|
|
|
|
|
def forbid_inf_nan_check(x: Any) -> Any:
|
|
if not math.isfinite(x):
|
|
raise PydanticKnownError('finite_number')
|
|
return x
|
|
|
|
|
|
def _safe_repr(v: Any) -> int | float | str:
|
|
"""The context argument for `PydanticKnownError` requires a number or str type, so we do a simple repr() coercion for types like timedelta.
|
|
|
|
See tests/test_types.py::test_annotated_metadata_any_order for some context.
|
|
"""
|
|
if isinstance(v, (int, float, str)):
|
|
return v
|
|
return repr(v)
|
|
|
|
|
|
def greater_than_validator(x: Any, gt: Any) -> Any:
|
|
try:
|
|
if not (x > gt):
|
|
raise PydanticKnownError('greater_than', {'gt': _safe_repr(gt)})
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'gt' to supplied value {x}")
|
|
|
|
|
|
def greater_than_or_equal_validator(x: Any, ge: Any) -> Any:
|
|
try:
|
|
if not (x >= ge):
|
|
raise PydanticKnownError('greater_than_equal', {'ge': _safe_repr(ge)})
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'ge' to supplied value {x}")
|
|
|
|
|
|
def less_than_validator(x: Any, lt: Any) -> Any:
|
|
try:
|
|
if not (x < lt):
|
|
raise PydanticKnownError('less_than', {'lt': _safe_repr(lt)})
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'lt' to supplied value {x}")
|
|
|
|
|
|
def less_than_or_equal_validator(x: Any, le: Any) -> Any:
|
|
try:
|
|
if not (x <= le):
|
|
raise PydanticKnownError('less_than_equal', {'le': _safe_repr(le)})
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'le' to supplied value {x}")
|
|
|
|
|
|
def multiple_of_validator(x: Any, multiple_of: Any) -> Any:
|
|
try:
|
|
if x % multiple_of:
|
|
raise PydanticKnownError('multiple_of', {'multiple_of': _safe_repr(multiple_of)})
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'multiple_of' to supplied value {x}")
|
|
|
|
|
|
def min_length_validator(x: Any, min_length: Any) -> Any:
|
|
try:
|
|
if not (len(x) >= min_length):
|
|
raise PydanticKnownError(
|
|
'too_short', {'field_type': 'Value', 'min_length': min_length, 'actual_length': len(x)}
|
|
)
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'min_length' to supplied value {x}")
|
|
|
|
|
|
def max_length_validator(x: Any, max_length: Any) -> Any:
|
|
try:
|
|
if len(x) > max_length:
|
|
raise PydanticKnownError(
|
|
'too_long',
|
|
{'field_type': 'Value', 'max_length': max_length, 'actual_length': len(x)},
|
|
)
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'max_length' to supplied value {x}")
|
|
|
|
|
|
def _extract_decimal_digits_info(decimal: Decimal) -> tuple[int, int]:
|
|
"""Compute the total number of digits and decimal places for a given [`Decimal`][decimal.Decimal] instance.
|
|
|
|
This function handles both normalized and non-normalized Decimal instances.
|
|
Example: Decimal('1.230') -> 4 digits, 3 decimal places
|
|
|
|
Args:
|
|
decimal (Decimal): The decimal number to analyze.
|
|
|
|
Returns:
|
|
tuple[int, int]: A tuple containing the number of decimal places and total digits.
|
|
|
|
Though this could be divided into two separate functions, the logic is easier to follow if we couple the computation
|
|
of the number of decimals and digits together.
|
|
"""
|
|
decimal_tuple = decimal.as_tuple()
|
|
if not isinstance(decimal_tuple.exponent, int):
|
|
raise TypeError(f'Unable to extract decimal digits info from supplied value {decimal}')
|
|
exponent = decimal_tuple.exponent
|
|
num_digits = len(decimal_tuple.digits)
|
|
|
|
if exponent >= 0:
|
|
# A positive exponent adds that many trailing zeros
|
|
# Ex: digit_tuple=(1, 2, 3), exponent=2 -> 12300 -> 0 decimal places, 5 digits
|
|
num_digits += exponent
|
|
decimal_places = 0
|
|
else:
|
|
# If the absolute value of the negative exponent is larger than the
|
|
# number of digits, then it's the same as the number of digits,
|
|
# because it'll consume all the digits in digit_tuple and then
|
|
# add abs(exponent) - len(digit_tuple) leading zeros after the decimal point.
|
|
# Ex: digit_tuple=(1, 2, 3), exponent=-2 -> 1.23 -> 2 decimal places, 3 digits
|
|
# Ex: digit_tuple=(1, 2, 3), exponent=-4 -> 0.0123 -> 4 decimal places, 4 digits
|
|
decimal_places = abs(exponent)
|
|
num_digits = max(num_digits, decimal_places)
|
|
|
|
return decimal_places, num_digits
|
|
|
|
|
|
def max_digits_validator(x: Any, max_digits: Any) -> Any:
|
|
_, num_digits = _extract_decimal_digits_info(x)
|
|
_, normalized_num_digits = _extract_decimal_digits_info(x.normalize())
|
|
|
|
try:
|
|
if (num_digits > max_digits) and (normalized_num_digits > max_digits):
|
|
raise PydanticKnownError(
|
|
'decimal_max_digits',
|
|
{'max_digits': max_digits},
|
|
)
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'max_digits' to supplied value {x}")
|
|
|
|
|
|
def decimal_places_validator(x: Any, decimal_places: Any) -> Any:
|
|
decimal_places_, _ = _extract_decimal_digits_info(x)
|
|
normalized_decimal_places, _ = _extract_decimal_digits_info(x.normalize())
|
|
|
|
try:
|
|
if (decimal_places_ > decimal_places) and (normalized_decimal_places > decimal_places):
|
|
raise PydanticKnownError(
|
|
'decimal_max_places',
|
|
{'decimal_places': decimal_places},
|
|
)
|
|
return x
|
|
except TypeError:
|
|
raise TypeError(f"Unable to apply constraint 'decimal_places' to supplied value {x}")
|
|
|
|
|
|
NUMERIC_VALIDATOR_LOOKUP: dict[str, Callable] = {
|
|
'gt': greater_than_validator,
|
|
'ge': greater_than_or_equal_validator,
|
|
'lt': less_than_validator,
|
|
'le': less_than_or_equal_validator,
|
|
'multiple_of': multiple_of_validator,
|
|
'min_length': min_length_validator,
|
|
'max_length': max_length_validator,
|
|
'max_digits': max_digits_validator,
|
|
'decimal_places': decimal_places_validator,
|
|
}
|
|
|
|
IpType = Union[IPv4Address, IPv6Address, IPv4Network, IPv6Network, IPv4Interface, IPv6Interface]
|
|
|
|
IP_VALIDATOR_LOOKUP: dict[type[IpType], Callable] = {
|
|
IPv4Address: ip_v4_address_validator,
|
|
IPv6Address: ip_v6_address_validator,
|
|
IPv4Network: ip_v4_network_validator,
|
|
IPv6Network: ip_v6_network_validator,
|
|
IPv4Interface: ip_v4_interface_validator,
|
|
IPv6Interface: ip_v6_interface_validator,
|
|
}
|