shuqianpinggu/huaxi/Lib/site-packages/openai/lib/_validators.py

810 lines
34 KiB
Python
Raw Normal View History

2025-06-17 17:46:44 +08:00
# pyright: basic
from __future__ import annotations
import os
import sys
from typing import Any, TypeVar, Callable, Optional, NamedTuple
from typing_extensions import TypeAlias
from .._extras import pandas as pd
class Remediation(NamedTuple):
name: str
immediate_msg: Optional[str] = None
necessary_msg: Optional[str] = None
necessary_fn: Optional[Callable[[Any], Any]] = None
optional_msg: Optional[str] = None
optional_fn: Optional[Callable[[Any], Any]] = None
error_msg: Optional[str] = None
OptionalDataFrameT = TypeVar("OptionalDataFrameT", bound="Optional[pd.DataFrame]")
def num_examples_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will only print out the number of examples and recommend to the user to increase the number of examples if less than 100.
"""
MIN_EXAMPLES = 100
optional_suggestion = (
""
if len(df) >= MIN_EXAMPLES
else ". In general, we recommend having at least a few hundred examples. We've found that performance tends to linearly increase for every doubling of the number of examples"
)
immediate_msg = f"\n- Your file contains {len(df)} prompt-completion pairs{optional_suggestion}"
return Remediation(name="num_examples", immediate_msg=immediate_msg)
def necessary_column_validator(df: pd.DataFrame, necessary_column: str) -> Remediation:
"""
This validator will ensure that the necessary column is present in the dataframe.
"""
def lower_case_column(df: pd.DataFrame, column: Any) -> pd.DataFrame:
cols = [c for c in df.columns if str(c).lower() == column]
df.rename(columns={cols[0]: column.lower()}, inplace=True)
return df
immediate_msg = None
necessary_fn = None
necessary_msg = None
error_msg = None
if necessary_column not in df.columns:
if necessary_column in [str(c).lower() for c in df.columns]:
def lower_case_column_creator(df: pd.DataFrame) -> pd.DataFrame:
return lower_case_column(df, necessary_column)
necessary_fn = lower_case_column_creator
immediate_msg = f"\n- The `{necessary_column}` column/key should be lowercase"
necessary_msg = f"Lower case column name to `{necessary_column}`"
else:
error_msg = f"`{necessary_column}` column/key is missing. Please make sure you name your columns/keys appropriately, then retry"
return Remediation(
name="necessary_column",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
error_msg=error_msg,
)
def additional_column_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation:
"""
This validator will remove additional columns from the dataframe.
"""
additional_columns = []
necessary_msg = None
immediate_msg = None
necessary_fn = None # type: ignore
if len(df.columns) > 2:
additional_columns = [c for c in df.columns if c not in fields]
warn_message = ""
for ac in additional_columns:
dups = [c for c in additional_columns if ac in c]
if len(dups) > 0:
warn_message += f"\n WARNING: Some of the additional columns/keys contain `{ac}` in their name. These will be ignored, and the column/key `{ac}` will be used instead. This could also result from a duplicate column/key in the provided file."
immediate_msg = f"\n- The input file should contain exactly two columns/keys per row. Additional columns/keys present are: {additional_columns}{warn_message}"
necessary_msg = f"Remove additional columns/keys: {additional_columns}"
def necessary_fn(x: Any) -> Any:
return x[fields]
return Remediation(
name="additional_column",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
)
def non_empty_field_validator(df: pd.DataFrame, field: str = "completion") -> Remediation:
"""
This validator will ensure that no completion is empty.
"""
necessary_msg = None
necessary_fn = None # type: ignore
immediate_msg = None
if df[field].apply(lambda x: x == "").any() or df[field].isnull().any():
empty_rows = (df[field] == "") | (df[field].isnull())
empty_indexes = df.reset_index().index[empty_rows].tolist()
immediate_msg = f"\n- `{field}` column/key should not contain empty strings. These are rows: {empty_indexes}"
def necessary_fn(x: Any) -> Any:
return x[x[field] != ""].dropna(subset=[field])
necessary_msg = f"Remove {len(empty_indexes)} rows with empty {field}s"
return Remediation(
name=f"empty_{field}",
immediate_msg=immediate_msg,
necessary_msg=necessary_msg,
necessary_fn=necessary_fn,
)
def duplicated_rows_validator(df: pd.DataFrame, fields: list[str] = ["prompt", "completion"]) -> Remediation:
"""
This validator will suggest to the user to remove duplicate rows if they exist.
"""
duplicated_rows = df.duplicated(subset=fields)
duplicated_indexes = df.reset_index().index[duplicated_rows].tolist()
immediate_msg = None
optional_msg = None
optional_fn = None # type: ignore
if len(duplicated_indexes) > 0:
immediate_msg = f"\n- There are {len(duplicated_indexes)} duplicated {'-'.join(fields)} sets. These are rows: {duplicated_indexes}"
optional_msg = f"Remove {len(duplicated_indexes)} duplicate rows"
def optional_fn(x: Any) -> Any:
return x.drop_duplicates(subset=fields)
return Remediation(
name="duplicated_rows",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def long_examples_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will suggest to the user to remove examples that are too long.
"""
immediate_msg = None
optional_msg = None
optional_fn = None # type: ignore
ft_type = infer_task_type(df)
if ft_type != "open-ended generation":
def get_long_indexes(d: pd.DataFrame) -> Any:
long_examples = d.apply(lambda x: len(x.prompt) + len(x.completion) > 10000, axis=1)
return d.reset_index().index[long_examples].tolist()
long_indexes = get_long_indexes(df)
if len(long_indexes) > 0:
immediate_msg = f"\n- There are {len(long_indexes)} examples that are very long. These are rows: {long_indexes}\nFor conditional generation, and for classification the examples shouldn't be longer than 2048 tokens."
optional_msg = f"Remove {len(long_indexes)} long examples"
def optional_fn(x: Any) -> Any:
long_indexes_to_drop = get_long_indexes(x)
if long_indexes != long_indexes_to_drop:
sys.stdout.write(
f"The indices of the long examples has changed as a result of a previously applied recommendation.\nThe {len(long_indexes_to_drop)} long examples to be dropped are now at the following indices: {long_indexes_to_drop}\n"
)
return x.drop(long_indexes_to_drop)
return Remediation(
name="long_examples",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_prompt_suffix_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will suggest to add a common suffix to the prompt if one doesn't already exist in case of classification or conditional generation.
"""
error_msg = None
immediate_msg = None
optional_msg = None
optional_fn = None # type: ignore
# Find a suffix which is not contained within the prompt otherwise
suggested_suffix = "\n\n### =>\n\n"
suffix_options = [
" ->",
"\n\n###\n\n",
"\n\n===\n\n",
"\n\n---\n\n",
"\n\n===>\n\n",
"\n\n--->\n\n",
]
for suffix_option in suffix_options:
if suffix_option == " ->":
if df.prompt.str.contains("\n").any():
continue
if df.prompt.str.contains(suffix_option, regex=False).any():
continue
suggested_suffix = suffix_option
break
display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
ft_type = infer_task_type(df)
if ft_type == "open-ended generation":
return Remediation(name="common_suffix")
def add_suffix(x: Any, suffix: Any) -> Any:
x["prompt"] += suffix
return x
common_suffix = get_common_xfix(df.prompt, xfix="suffix")
if (df.prompt == common_suffix).all():
error_msg = f"All prompts are identical: `{common_suffix}`\nConsider leaving the prompts blank if you want to do open-ended generation, otherwise ensure prompts are different"
return Remediation(name="common_suffix", error_msg=error_msg)
if common_suffix != "":
common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
immediate_msg = f"\n- All prompts end with suffix `{common_suffix_new_line_handled}`"
if len(common_suffix) > 10:
immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
if df.prompt.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any():
immediate_msg += f"\n WARNING: Some of your prompts contain the suffix `{common_suffix}` more than once. We strongly suggest that you review your prompts and add a unique suffix"
else:
immediate_msg = "\n- Your data does not contain a common separator at the end of your prompts. Having a separator string appended to the end of the prompt makes it clearer to the fine-tuned model where the completion should begin. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples. If you intend to do open-ended generation, then you should leave the prompts empty"
if common_suffix == "":
optional_msg = f"Add a suffix separator `{display_suggested_suffix}` to all prompts"
def optional_fn(x: Any) -> Any:
return add_suffix(x, suggested_suffix)
return Remediation(
name="common_completion_suffix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
error_msg=error_msg,
)
def common_prompt_prefix_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will suggest to remove a common prefix from the prompt if a long one exist.
"""
MAX_PREFIX_LEN = 12
immediate_msg = None
optional_msg = None
optional_fn = None # type: ignore
common_prefix = get_common_xfix(df.prompt, xfix="prefix")
if common_prefix == "":
return Remediation(name="common_prefix")
def remove_common_prefix(x: Any, prefix: Any) -> Any:
x["prompt"] = x["prompt"].str[len(prefix) :]
return x
if (df.prompt == common_prefix).all():
# already handled by common_suffix_validator
return Remediation(name="common_prefix")
if common_prefix != "":
immediate_msg = f"\n- All prompts start with prefix `{common_prefix}`"
if MAX_PREFIX_LEN < len(common_prefix):
immediate_msg += ". Fine-tuning doesn't require the instruction specifying the task, or a few-shot example scenario. Most of the time you should only add the input data into the prompt, and the desired output into the completion"
optional_msg = f"Remove prefix `{common_prefix}` from all prompts"
def optional_fn(x: Any) -> Any:
return remove_common_prefix(x, common_prefix)
return Remediation(
name="common_prompt_prefix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_completion_prefix_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will suggest to remove a common prefix from the completion if a long one exist.
"""
MAX_PREFIX_LEN = 5
common_prefix = get_common_xfix(df.completion, xfix="prefix")
ws_prefix = len(common_prefix) > 0 and common_prefix[0] == " "
if len(common_prefix) < MAX_PREFIX_LEN:
return Remediation(name="common_prefix")
def remove_common_prefix(x: Any, prefix: Any, ws_prefix: Any) -> Any:
x["completion"] = x["completion"].str[len(prefix) :]
if ws_prefix:
# keep the single whitespace as prefix
x["completion"] = f" {x['completion']}"
return x
if (df.completion == common_prefix).all():
# already handled by common_suffix_validator
return Remediation(name="common_prefix")
immediate_msg = f"\n- All completions start with prefix `{common_prefix}`. Most of the time you should only add the output data into the completion, without any prefix"
optional_msg = f"Remove prefix `{common_prefix}` from all completions"
def optional_fn(x: Any) -> Any:
return remove_common_prefix(x, common_prefix, ws_prefix)
return Remediation(
name="common_completion_prefix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def common_completion_suffix_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will suggest to add a common suffix to the completion if one doesn't already exist in case of classification or conditional generation.
"""
error_msg = None
immediate_msg = None
optional_msg = None
optional_fn = None # type: ignore
ft_type = infer_task_type(df)
if ft_type == "open-ended generation" or ft_type == "classification":
return Remediation(name="common_suffix")
common_suffix = get_common_xfix(df.completion, xfix="suffix")
if (df.completion == common_suffix).all():
error_msg = f"All completions are identical: `{common_suffix}`\nEnsure completions are different, otherwise the model will just repeat `{common_suffix}`"
return Remediation(name="common_suffix", error_msg=error_msg)
# Find a suffix which is not contained within the completion otherwise
suggested_suffix = " [END]"
suffix_options = [
"\n",
".",
" END",
"***",
"+++",
"&&&",
"$$$",
"@@@",
"%%%",
]
for suffix_option in suffix_options:
if df.completion.str.contains(suffix_option, regex=False).any():
continue
suggested_suffix = suffix_option
break
display_suggested_suffix = suggested_suffix.replace("\n", "\\n")
def add_suffix(x: Any, suffix: Any) -> Any:
x["completion"] += suffix
return x
if common_suffix != "":
common_suffix_new_line_handled = common_suffix.replace("\n", "\\n")
immediate_msg = f"\n- All completions end with suffix `{common_suffix_new_line_handled}`"
if len(common_suffix) > 10:
immediate_msg += f". This suffix seems very long. Consider replacing with a shorter suffix, such as `{display_suggested_suffix}`"
if df.completion.str[: -len(common_suffix)].str.contains(common_suffix, regex=False).any():
immediate_msg += f"\n WARNING: Some of your completions contain the suffix `{common_suffix}` more than once. We suggest that you review your completions and add a unique ending"
else:
immediate_msg = "\n- Your data does not contain a common ending at the end of your completions. Having a common ending string appended to the end of the completion makes it clearer to the fine-tuned model where the completion should end. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more detail and examples."
if common_suffix == "":
optional_msg = f"Add a suffix ending `{display_suggested_suffix}` to all completions"
def optional_fn(x: Any) -> Any:
return add_suffix(x, suggested_suffix)
return Remediation(
name="common_completion_suffix",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
error_msg=error_msg,
)
def completions_space_start_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will suggest to add a space at the start of the completion if it doesn't already exist. This helps with tokenization.
"""
def add_space_start(x: Any) -> Any:
x["completion"] = x["completion"].apply(lambda s: ("" if s.startswith(" ") else " ") + s)
return x
optional_msg = None
optional_fn = None
immediate_msg = None
if df.completion.str[:1].nunique() != 1 or df.completion.values[0][0] != " ":
immediate_msg = "\n- The completion should start with a whitespace character (` `). This tends to produce better results due to the tokenization we use. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details"
optional_msg = "Add a whitespace character to the beginning of the completion"
optional_fn = add_space_start
return Remediation(
name="completion_space_start",
immediate_msg=immediate_msg,
optional_msg=optional_msg,
optional_fn=optional_fn,
)
def lower_case_validator(df: pd.DataFrame, column: Any) -> Remediation | None:
"""
This validator will suggest to lowercase the column values, if more than a third of letters are uppercase.
"""
def lower_case(x: Any) -> Any:
x[column] = x[column].str.lower()
return x
count_upper = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.isupper())).sum()
count_lower = df[column].apply(lambda x: sum(1 for c in x if c.isalpha() and c.islower())).sum()
if count_upper * 2 > count_lower:
return Remediation(
name="lower_case",
immediate_msg=f"\n- More than a third of your `{column}` column/key is uppercase. Uppercase {column}s tends to perform worse than a mixture of case encountered in normal language. We recommend to lower case the data if that makes sense in your domain. See https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset for more details",
optional_msg=f"Lowercase all your data in column/key `{column}`",
optional_fn=lower_case,
)
return None
def read_any_format(
fname: str, fields: list[str] = ["prompt", "completion"]
) -> tuple[pd.DataFrame | None, Remediation]:
"""
This function will read a file saved in .csv, .json, .txt, .xlsx or .tsv format using pandas.
- for .xlsx it will read the first sheet
- for .txt it will assume completions and split on newline
"""
remediation = None
necessary_msg = None
immediate_msg = None
error_msg = None
df = None
if os.path.isfile(fname):
try:
if fname.lower().endswith(".csv") or fname.lower().endswith(".tsv"):
file_extension_str, separator = ("CSV", ",") if fname.lower().endswith(".csv") else ("TSV", "\t")
immediate_msg = (
f"\n- Based on your file extension, your file is formatted as a {file_extension_str} file"
)
necessary_msg = f"Your format `{file_extension_str}` will be converted to `JSONL`"
df = pd.read_csv(fname, sep=separator, dtype=str).fillna("")
elif fname.lower().endswith(".xlsx"):
immediate_msg = "\n- Based on your file extension, your file is formatted as an Excel file"
necessary_msg = "Your format `XLSX` will be converted to `JSONL`"
xls = pd.ExcelFile(fname)
sheets = xls.sheet_names
if len(sheets) > 1:
immediate_msg += "\n- Your Excel file contains more than one sheet. Please either save as csv or ensure all data is present in the first sheet. WARNING: Reading only the first sheet..."
df = pd.read_excel(fname, dtype=str).fillna("")
elif fname.lower().endswith(".txt"):
immediate_msg = "\n- Based on your file extension, you provided a text file"
necessary_msg = "Your format `TXT` will be converted to `JSONL`"
with open(fname, "r") as f:
content = f.read()
df = pd.DataFrame(
[["", line] for line in content.split("\n")],
columns=fields,
dtype=str,
).fillna("")
elif fname.lower().endswith(".jsonl"):
df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore
if len(df) == 1: # type: ignore
# this is NOT what we expect for a .jsonl file
immediate_msg = "\n- Your JSONL file appears to be in a JSON format. Your file will be converted to JSONL format"
necessary_msg = "Your format `JSON` will be converted to `JSONL`"
df = pd.read_json(fname, dtype=str).fillna("") # type: ignore
else:
pass # this is what we expect for a .jsonl file
elif fname.lower().endswith(".json"):
try:
# to handle case where .json file is actually a .jsonl file
df = pd.read_json(fname, lines=True, dtype=str).fillna("") # type: ignore
if len(df) == 1: # type: ignore
# this code path corresponds to a .json file that has one line
df = pd.read_json(fname, dtype=str).fillna("") # type: ignore
else:
# this is NOT what we expect for a .json file
immediate_msg = "\n- Your JSON file appears to be in a JSONL format. Your file will be converted to JSONL format"
necessary_msg = "Your format `JSON` will be converted to `JSONL`"
except ValueError:
# this code path corresponds to a .json file that has multiple lines (i.e. it is indented)
df = pd.read_json(fname, dtype=str).fillna("") # type: ignore
else:
error_msg = (
"Your file must have one of the following extensions: .CSV, .TSV, .XLSX, .TXT, .JSON or .JSONL"
)
if "." in fname:
error_msg += f" Your file `{fname}` ends with the extension `.{fname.split('.')[-1]}` which is not supported."
else:
error_msg += f" Your file `{fname}` is missing a file extension."
except (ValueError, TypeError):
file_extension_str = fname.split(".")[-1].upper()
error_msg = f"Your file `{fname}` does not appear to be in valid {file_extension_str} format. Please ensure your file is formatted as a valid {file_extension_str} file."
else:
error_msg = f"File {fname} does not exist."
remediation = Remediation(
name="read_any_format",
necessary_msg=necessary_msg,
immediate_msg=immediate_msg,
error_msg=error_msg,
)
return df, remediation
def format_inferrer_validator(df: pd.DataFrame) -> Remediation:
"""
This validator will infer the likely fine-tuning format of the data, and display it to the user if it is classification.
It will also suggest to use ada and explain train/validation split benefits.
"""
ft_type = infer_task_type(df)
immediate_msg = None
if ft_type == "classification":
immediate_msg = f"\n- Based on your data it seems like you're trying to fine-tune a model for {ft_type}\n- For classification, we recommend you try one of the faster and cheaper models, such as `ada`\n- For classification, you can estimate the expected model performance by keeping a held out dataset, which is not used for training"
return Remediation(name="num_examples", immediate_msg=immediate_msg)
def apply_necessary_remediation(df: OptionalDataFrameT, remediation: Remediation) -> OptionalDataFrameT:
"""
This function will apply a necessary remediation to a dataframe, or print an error message if one exists.
"""
if remediation.error_msg is not None:
sys.stderr.write(f"\n\nERROR in {remediation.name} validator: {remediation.error_msg}\n\nAborting...")
sys.exit(1)
if remediation.immediate_msg is not None:
sys.stdout.write(remediation.immediate_msg)
if remediation.necessary_fn is not None:
df = remediation.necessary_fn(df)
return df
def accept_suggestion(input_text: str, auto_accept: bool) -> bool:
sys.stdout.write(input_text)
if auto_accept:
sys.stdout.write("Y\n")
return True
return input().lower() != "n"
def apply_optional_remediation(
df: pd.DataFrame, remediation: Remediation, auto_accept: bool
) -> tuple[pd.DataFrame, bool]:
"""
This function will apply an optional remediation to a dataframe, based on the user input.
"""
optional_applied = False
input_text = f"- [Recommended] {remediation.optional_msg} [Y/n]: "
if remediation.optional_msg is not None:
if accept_suggestion(input_text, auto_accept):
assert remediation.optional_fn is not None
df = remediation.optional_fn(df)
optional_applied = True
if remediation.necessary_msg is not None:
sys.stdout.write(f"- [Necessary] {remediation.necessary_msg}\n")
return df, optional_applied
def estimate_fine_tuning_time(df: pd.DataFrame) -> None:
"""
Estimate the time it'll take to fine-tune the dataset
"""
ft_format = infer_task_type(df)
expected_time = 1.0
if ft_format == "classification":
num_examples = len(df)
expected_time = num_examples * 1.44
else:
size = df.memory_usage(index=True).sum()
expected_time = size * 0.0515
def format_time(time: float) -> str:
if time < 60:
return f"{round(time, 2)} seconds"
elif time < 3600:
return f"{round(time / 60, 2)} minutes"
elif time < 86400:
return f"{round(time / 3600, 2)} hours"
else:
return f"{round(time / 86400, 2)} days"
time_string = format_time(expected_time + 140)
sys.stdout.write(
f"Once your model starts training, it'll approximately take {time_string} to train a `curie` model, and less for `ada` and `babbage`. Queue will approximately take half an hour per job ahead of you.\n"
)
def get_outfnames(fname: str, split: bool) -> list[str]:
suffixes = ["_train", "_valid"] if split else [""]
i = 0
while True:
index_suffix = f" ({i})" if i > 0 else ""
candidate_fnames = [f"{os.path.splitext(fname)[0]}_prepared{suffix}{index_suffix}.jsonl" for suffix in suffixes]
if not any(os.path.isfile(f) for f in candidate_fnames):
return candidate_fnames
i += 1
def get_classification_hyperparams(df: pd.DataFrame) -> tuple[int, object]:
n_classes = df.completion.nunique()
pos_class = None
if n_classes == 2:
pos_class = df.completion.value_counts().index[0]
return n_classes, pos_class
def write_out_file(df: pd.DataFrame, fname: str, any_remediations: bool, auto_accept: bool) -> None:
"""
This function will write out a dataframe to a file, if the user would like to proceed, and also offer a fine-tuning command with the newly created file.
For classification it will optionally ask the user if they would like to split the data into train/valid files, and modify the suggested command to include the valid set.
"""
ft_format = infer_task_type(df)
common_prompt_suffix = get_common_xfix(df.prompt, xfix="suffix")
common_completion_suffix = get_common_xfix(df.completion, xfix="suffix")
split = False
input_text = "- [Recommended] Would you like to split into training and validation set? [Y/n]: "
if ft_format == "classification":
if accept_suggestion(input_text, auto_accept):
split = True
additional_params = ""
common_prompt_suffix_new_line_handled = common_prompt_suffix.replace("\n", "\\n")
common_completion_suffix_new_line_handled = common_completion_suffix.replace("\n", "\\n")
optional_ending_string = (
f' Make sure to include `stop=["{common_completion_suffix_new_line_handled}"]` so that the generated texts ends at the expected place.'
if len(common_completion_suffix_new_line_handled) > 0
else ""
)
input_text = "\n\nYour data will be written to a new JSONL file. Proceed [Y/n]: "
if not any_remediations and not split:
sys.stdout.write(
f'\nYou can use your file for fine-tuning:\n> openai api fine_tunes.create -t "{fname}"{additional_params}\n\nAfter youve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt.{optional_ending_string}\n'
)
estimate_fine_tuning_time(df)
elif accept_suggestion(input_text, auto_accept):
fnames = get_outfnames(fname, split)
if split:
assert len(fnames) == 2 and "train" in fnames[0] and "valid" in fnames[1]
MAX_VALID_EXAMPLES = 1000
n_train = max(len(df) - MAX_VALID_EXAMPLES, int(len(df) * 0.8))
df_train = df.sample(n=n_train, random_state=42)
df_valid = df.drop(df_train.index)
df_train[["prompt", "completion"]].to_json( # type: ignore
fnames[0], lines=True, orient="records", force_ascii=False, indent=None
)
df_valid[["prompt", "completion"]].to_json(
fnames[1], lines=True, orient="records", force_ascii=False, indent=None
)
n_classes, pos_class = get_classification_hyperparams(df)
additional_params += " --compute_classification_metrics"
if n_classes == 2:
additional_params += f' --classification_positive_class "{pos_class}"'
else:
additional_params += f" --classification_n_classes {n_classes}"
else:
assert len(fnames) == 1
df[["prompt", "completion"]].to_json(
fnames[0], lines=True, orient="records", force_ascii=False, indent=None
)
# Add -v VALID_FILE if we split the file into train / valid
files_string = ("s" if split else "") + " to `" + ("` and `".join(fnames))
valid_string = f' -v "{fnames[1]}"' if split else ""
separator_reminder = (
""
if len(common_prompt_suffix_new_line_handled) == 0
else f"After youve fine-tuned a model, remember that your prompt has to end with the indicator string `{common_prompt_suffix_new_line_handled}` for the model to start generating completions, rather than continuing with the prompt."
)
sys.stdout.write(
f'\nWrote modified file{files_string}`\nFeel free to take a look!\n\nNow use that file when fine-tuning:\n> openai api fine_tunes.create -t "{fnames[0]}"{valid_string}{additional_params}\n\n{separator_reminder}{optional_ending_string}\n'
)
estimate_fine_tuning_time(df)
else:
sys.stdout.write("Aborting... did not write the file\n")
def infer_task_type(df: pd.DataFrame) -> str:
"""
Infer the likely fine-tuning task type from the data
"""
CLASSIFICATION_THRESHOLD = 3 # min_average instances of each class
if sum(df.prompt.str.len()) == 0:
return "open-ended generation"
if len(df.completion.unique()) < len(df) / CLASSIFICATION_THRESHOLD:
return "classification"
return "conditional generation"
def get_common_xfix(series: Any, xfix: str = "suffix") -> str:
"""
Finds the longest common suffix or prefix of all the values in a series
"""
common_xfix = ""
while True:
common_xfixes = (
series.str[-(len(common_xfix) + 1) :] if xfix == "suffix" else series.str[: len(common_xfix) + 1]
) # first few or last few characters
if common_xfixes.nunique() != 1: # we found the character at which we don't have a unique xfix anymore
break
elif common_xfix == common_xfixes.values[0]: # the entire first row is a prefix of every other row
break
else: # the first or last few characters are still common across all rows - let's try to add one more
common_xfix = common_xfixes.values[0]
return common_xfix
Validator: TypeAlias = "Callable[[pd.DataFrame], Remediation | None]"
def get_validators() -> list[Validator]:
return [
num_examples_validator,
lambda x: necessary_column_validator(x, "prompt"),
lambda x: necessary_column_validator(x, "completion"),
additional_column_validator,
non_empty_field_validator,
format_inferrer_validator,
duplicated_rows_validator,
long_examples_validator,
lambda x: lower_case_validator(x, "prompt"),
lambda x: lower_case_validator(x, "completion"),
common_prompt_suffix_validator,
common_prompt_prefix_validator,
common_completion_prefix_validator,
common_completion_suffix_validator,
completions_space_start_validator,
]
def apply_validators(
df: pd.DataFrame,
fname: str,
remediation: Remediation | None,
validators: list[Validator],
auto_accept: bool,
write_out_file_func: Callable[..., Any],
) -> None:
optional_remediations: list[Remediation] = []
if remediation is not None:
optional_remediations.append(remediation)
for validator in validators:
remediation = validator(df)
if remediation is not None:
optional_remediations.append(remediation)
df = apply_necessary_remediation(df, remediation)
any_optional_or_necessary_remediations = any(
[
remediation
for remediation in optional_remediations
if remediation.optional_msg is not None or remediation.necessary_msg is not None
]
)
any_necessary_applied = any(
[remediation for remediation in optional_remediations if remediation.necessary_msg is not None]
)
any_optional_applied = False
if any_optional_or_necessary_remediations:
sys.stdout.write("\n\nBased on the analysis we will perform the following actions:\n")
for remediation in optional_remediations:
df, optional_applied = apply_optional_remediation(df, remediation, auto_accept)
any_optional_applied = any_optional_applied or optional_applied
else:
sys.stdout.write("\n\nNo remediations found.\n")
any_optional_or_necessary_applied = any_optional_applied or any_necessary_applied
write_out_file_func(df, fname, any_optional_or_necessary_applied, auto_accept)