shuqianpinggu/huaxi/Lib/site-packages/openai/resources/beta/chat/completions.py

630 lines
28 KiB
Python
Raw Permalink Normal View History

2025-06-17 17:46:44 +08:00
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import Dict, List, Type, Union, Iterable, Optional, cast
from functools import partial
from typing_extensions import Literal
import httpx
from .... import _legacy_response
from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from ...._utils import maybe_transform, async_maybe_transform
from ...._compat import cached_property
from ...._resource import SyncAPIResource, AsyncAPIResource
from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...._streaming import Stream
from ....types.chat import (
ChatCompletionReasoningEffort,
completion_create_params,
)
from ...._base_client import make_request_options
from ....lib._parsing import (
ResponseFormatT,
validate_input_tools as _validate_input_tools,
parse_chat_completion as _parse_chat_completion,
type_to_response_format_param as _type_to_response_format,
)
from ....types.chat_model import ChatModel
from ....lib.streaming.chat import ChatCompletionStreamManager, AsyncChatCompletionStreamManager
from ....types.chat.chat_completion import ChatCompletion
from ....types.chat.chat_completion_chunk import ChatCompletionChunk
from ....types.chat.parsed_chat_completion import ParsedChatCompletion
from ....types.chat.chat_completion_modality import ChatCompletionModality
from ....types.chat.chat_completion_tool_param import ChatCompletionToolParam
from ....types.chat.chat_completion_audio_param import ChatCompletionAudioParam
from ....types.chat.chat_completion_message_param import ChatCompletionMessageParam
from ....types.chat.chat_completion_stream_options_param import ChatCompletionStreamOptionsParam
from ....types.chat.chat_completion_prediction_content_param import ChatCompletionPredictionContentParam
from ....types.chat.chat_completion_tool_choice_option_param import ChatCompletionToolChoiceOptionParam
__all__ = ["Completions", "AsyncCompletions"]
class Completions(SyncAPIResource):
@cached_property
def with_raw_response(self) -> CompletionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return CompletionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> CompletionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return CompletionsWithStreamingResponse(self)
def parse(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN,
response_format: type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
modalities: Optional[List[ChatCompletionModality]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
reasoning_effort: ChatCompletionReasoningEffort | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ParsedChatCompletion[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types
& returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.
You can pass a pydantic model to this method and it will automatically convert the model
into a JSON schema, send it to the API and parse the response content back into the given model.
This method will also automatically parse `function` tool calls if:
- You use the `openai.pydantic_function_tool()` helper method
- You mark your tool schema with `"strict": True`
Example usage:
```py
from pydantic import BaseModel
from openai import OpenAI
class Step(BaseModel):
explanation: str
output: str
class MathResponse(BaseModel):
steps: List[Step]
final_answer: str
client = OpenAI()
completion = client.beta.chat.completions.parse(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "solve 8x + 31 = 2"},
],
response_format=MathResponse,
)
message = completion.choices[0].message
if message.parsed:
print(message.parsed.steps)
print("answer: ", message.parsed.final_answer)
```
"""
_validate_input_tools(tools)
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.parse",
**(extra_headers or {}),
}
def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]:
return _parse_chat_completion(
response_format=response_format,
chat_completion=raw_completion,
input_tools=tools,
)
return self._post(
"/chat/completions",
body=maybe_transform(
{
"messages": messages,
"model": model,
"audio": audio,
"frequency_penalty": frequency_penalty,
"function_call": function_call,
"functions": functions,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"metadata": metadata,
"modalities": modalities,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"prediction": prediction,
"presence_penalty": presence_penalty,
"reasoning_effort": reasoning_effort,
"response_format": _type_to_response_format(response_format),
"seed": seed,
"service_tier": service_tier,
"stop": stop,
"store": store,
"stream": False,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
# we turn the `ChatCompletion` instance into a `ParsedChatCompletion`
# in the `parser` function above
cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion),
stream=False,
)
def stream(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN,
response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
modalities: Optional[List[ChatCompletionModality]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
reasoning_effort: ChatCompletionReasoningEffort | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ChatCompletionStreamManager[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API
and automatic accumulation of each delta.
This also supports all of the parsing utilities that `.parse()` does.
Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:
```py
with client.beta.chat.completions.stream(
model="gpt-4o-2024-08-06",
messages=[...],
) as stream:
for event in stream:
if event.type == "content.delta":
print(event.delta, flush=True, end="")
```
When the context manager is entered, a `ChatCompletionStream` instance is returned which, like `.create(stream=True)` is an iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events).
When the context manager exits, the response will be closed, however the `stream` instance is still available outside
the context manager.
"""
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.stream",
**(extra_headers or {}),
}
api_request: partial[Stream[ChatCompletionChunk]] = partial(
self._client.chat.completions.create,
messages=messages,
model=model,
audio=audio,
stream=True,
response_format=_type_to_response_format(response_format),
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
metadata=metadata,
modalities=modalities,
n=n,
parallel_tool_calls=parallel_tool_calls,
prediction=prediction,
presence_penalty=presence_penalty,
reasoning_effort=reasoning_effort,
seed=seed,
service_tier=service_tier,
store=store,
stop=stop,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
)
return ChatCompletionStreamManager(
api_request,
response_format=response_format,
input_tools=tools,
)
class AsyncCompletions(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncCompletionsWithRawResponse:
"""
This property can be used as a prefix for any HTTP method call to return the
the raw response object instead of the parsed content.
For more information, see https://www.github.com/openai/openai-python#accessing-raw-response-data-eg-headers
"""
return AsyncCompletionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncCompletionsWithStreamingResponse:
"""
An alternative to `.with_raw_response` that doesn't eagerly read the response body.
For more information, see https://www.github.com/openai/openai-python#with_streaming_response
"""
return AsyncCompletionsWithStreamingResponse(self)
async def parse(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN,
response_format: type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
modalities: Optional[List[ChatCompletionModality]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
reasoning_effort: ChatCompletionReasoningEffort | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> ParsedChatCompletion[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create()` method that provides richer integrations with Python specific types
& returns a `ParsedChatCompletion` object, which is a subclass of the standard `ChatCompletion` class.
You can pass a pydantic model to this method and it will automatically convert the model
into a JSON schema, send it to the API and parse the response content back into the given model.
This method will also automatically parse `function` tool calls if:
- You use the `openai.pydantic_function_tool()` helper method
- You mark your tool schema with `"strict": True`
Example usage:
```py
from pydantic import BaseModel
from openai import AsyncOpenAI
class Step(BaseModel):
explanation: str
output: str
class MathResponse(BaseModel):
steps: List[Step]
final_answer: str
client = AsyncOpenAI()
completion = await client.beta.chat.completions.parse(
model="gpt-4o-2024-08-06",
messages=[
{"role": "system", "content": "You are a helpful math tutor."},
{"role": "user", "content": "solve 8x + 31 = 2"},
],
response_format=MathResponse,
)
message = completion.choices[0].message
if message.parsed:
print(message.parsed.steps)
print("answer: ", message.parsed.final_answer)
```
"""
_validate_input_tools(tools)
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.parse",
**(extra_headers or {}),
}
def parser(raw_completion: ChatCompletion) -> ParsedChatCompletion[ResponseFormatT]:
return _parse_chat_completion(
response_format=response_format,
chat_completion=raw_completion,
input_tools=tools,
)
return await self._post(
"/chat/completions",
body=await async_maybe_transform(
{
"messages": messages,
"model": model,
"audio": audio,
"frequency_penalty": frequency_penalty,
"function_call": function_call,
"functions": functions,
"logit_bias": logit_bias,
"logprobs": logprobs,
"max_completion_tokens": max_completion_tokens,
"max_tokens": max_tokens,
"metadata": metadata,
"modalities": modalities,
"n": n,
"parallel_tool_calls": parallel_tool_calls,
"prediction": prediction,
"presence_penalty": presence_penalty,
"reasoning_effort": reasoning_effort,
"response_format": _type_to_response_format(response_format),
"seed": seed,
"service_tier": service_tier,
"store": store,
"stop": stop,
"stream": False,
"stream_options": stream_options,
"temperature": temperature,
"tool_choice": tool_choice,
"tools": tools,
"top_logprobs": top_logprobs,
"top_p": top_p,
"user": user,
},
completion_create_params.CompletionCreateParams,
),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
# we turn the `ChatCompletion` instance into a `ParsedChatCompletion`
# in the `parser` function above
cast_to=cast(Type[ParsedChatCompletion[ResponseFormatT]], ChatCompletion),
stream=False,
)
def stream(
self,
*,
messages: Iterable[ChatCompletionMessageParam],
model: Union[str, ChatModel],
audio: Optional[ChatCompletionAudioParam] | NotGiven = NOT_GIVEN,
response_format: completion_create_params.ResponseFormat | type[ResponseFormatT] | NotGiven = NOT_GIVEN,
frequency_penalty: Optional[float] | NotGiven = NOT_GIVEN,
function_call: completion_create_params.FunctionCall | NotGiven = NOT_GIVEN,
functions: Iterable[completion_create_params.Function] | NotGiven = NOT_GIVEN,
logit_bias: Optional[Dict[str, int]] | NotGiven = NOT_GIVEN,
logprobs: Optional[bool] | NotGiven = NOT_GIVEN,
max_completion_tokens: Optional[int] | NotGiven = NOT_GIVEN,
max_tokens: Optional[int] | NotGiven = NOT_GIVEN,
metadata: Optional[Dict[str, str]] | NotGiven = NOT_GIVEN,
modalities: Optional[List[ChatCompletionModality]] | NotGiven = NOT_GIVEN,
n: Optional[int] | NotGiven = NOT_GIVEN,
parallel_tool_calls: bool | NotGiven = NOT_GIVEN,
prediction: Optional[ChatCompletionPredictionContentParam] | NotGiven = NOT_GIVEN,
presence_penalty: Optional[float] | NotGiven = NOT_GIVEN,
reasoning_effort: ChatCompletionReasoningEffort | NotGiven = NOT_GIVEN,
seed: Optional[int] | NotGiven = NOT_GIVEN,
service_tier: Optional[Literal["auto", "default"]] | NotGiven = NOT_GIVEN,
stop: Union[Optional[str], List[str]] | NotGiven = NOT_GIVEN,
store: Optional[bool] | NotGiven = NOT_GIVEN,
stream_options: Optional[ChatCompletionStreamOptionsParam] | NotGiven = NOT_GIVEN,
temperature: Optional[float] | NotGiven = NOT_GIVEN,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven = NOT_GIVEN,
tools: Iterable[ChatCompletionToolParam] | NotGiven = NOT_GIVEN,
top_logprobs: Optional[int] | NotGiven = NOT_GIVEN,
top_p: Optional[float] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> AsyncChatCompletionStreamManager[ResponseFormatT]:
"""Wrapper over the `client.chat.completions.create(stream=True)` method that provides a more granular event API
and automatic accumulation of each delta.
This also supports all of the parsing utilities that `.parse()` does.
Unlike `.create(stream=True)`, the `.stream()` method requires usage within a context manager to prevent accidental leakage of the response:
```py
async with client.beta.chat.completions.stream(
model="gpt-4o-2024-08-06",
messages=[...],
) as stream:
async for event in stream:
if event.type == "content.delta":
print(event.delta, flush=True, end="")
```
When the context manager is entered, an `AsyncChatCompletionStream` instance is returned which, like `.create(stream=True)` is an async iterator. The full list of events that are yielded by the iterator are outlined in [these docs](https://github.com/openai/openai-python/blob/main/helpers.md#chat-completions-events).
When the context manager exits, the response will be closed, however the `stream` instance is still available outside
the context manager.
"""
_validate_input_tools(tools)
extra_headers = {
"X-Stainless-Helper-Method": "beta.chat.completions.stream",
**(extra_headers or {}),
}
api_request = self._client.chat.completions.create(
messages=messages,
model=model,
audio=audio,
stream=True,
response_format=_type_to_response_format(response_format),
frequency_penalty=frequency_penalty,
function_call=function_call,
functions=functions,
logit_bias=logit_bias,
logprobs=logprobs,
max_completion_tokens=max_completion_tokens,
max_tokens=max_tokens,
metadata=metadata,
modalities=modalities,
n=n,
parallel_tool_calls=parallel_tool_calls,
prediction=prediction,
presence_penalty=presence_penalty,
reasoning_effort=reasoning_effort,
seed=seed,
service_tier=service_tier,
stop=stop,
store=store,
stream_options=stream_options,
temperature=temperature,
tool_choice=tool_choice,
tools=tools,
top_logprobs=top_logprobs,
top_p=top_p,
user=user,
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
)
return AsyncChatCompletionStreamManager(
api_request,
response_format=response_format,
input_tools=tools,
)
class CompletionsWithRawResponse:
def __init__(self, completions: Completions) -> None:
self._completions = completions
self.parse = _legacy_response.to_raw_response_wrapper(
completions.parse,
)
class AsyncCompletionsWithRawResponse:
def __init__(self, completions: AsyncCompletions) -> None:
self._completions = completions
self.parse = _legacy_response.async_to_raw_response_wrapper(
completions.parse,
)
class CompletionsWithStreamingResponse:
def __init__(self, completions: Completions) -> None:
self._completions = completions
self.parse = to_streamed_response_wrapper(
completions.parse,
)
class AsyncCompletionsWithStreamingResponse:
def __init__(self, completions: AsyncCompletions) -> None:
self._completions = completions
self.parse = async_to_streamed_response_wrapper(
completions.parse,
)